Models for Computing Emission of Carbon Dioxide from ...

June 12, 2017 | Author: Anonymous | Category: Documents
Share Embed


Short Description

Received: September 28, 2016; Accepted: January 17, 2017; Published: February 17, ..... Gas www.nmcabuja.org/proceedings...

Description

American Journal of Mathematical and Computer Modelling 2017; 2(1): 29-38 http://www.sciencepublishinggroup.com//!mcm "oi: 10.11#$8/.!mcm.20170201.1%

Models for Computing Emission of Carbon Dioxide from Liquid Fuel in Nigeria Oyelami Benjamin Oyediran

1, 2

, Buba Maman Wufem

2

1

 &!tion!l '!them!tic!l '!them!tic!l entre entre *bu! &igeri! &igeri!

2

+!cult, o &!tur!l !n" *pplie" ciences l!te!u t!te niersit, oos &igeri!

Email address:  bo,el!mi20004,!  bo,el!mi20004,!hoo.com hoo.com (. 5. 5,el!mi) 5,el!mi)

To cite this article: 5,el!mi en!min 5,e"ir!n ub! '!m!n 6uem. 'o"els or omputing mission o !rbon ioi"e rom iui" +uel in &igeri!.  American Journal Journal of Mathematical Mathematical and and Computer Modelling. n this p!per !rbon "ioi"e emission rom the liui" uel supplie" in &igeri! b, the &igeri!n &!tion!l etroleum orpor!tion (&&) rom 2009 to 2013 is !n!l,se". ?he 5 2  emissions !n" 52  emission per c!pit! within the gien perio" !re compute" !n" proecte" emission rom 2013 to 202% m!"e using the greenhouse tr!ining eu!tion !rtiici!l neur!l networ (*&&) mo"el !n" pol,nomi!l interpol!tion metho" !n" nonline!r itting metho". ?he !!il!ble "!t! rom the  &igeri!n &!tion!l etroleum ooper!tion (&&) is etr!pol!te rom 2013 to 2020 using the pol,nomi!l interpol!tion metho" !n" the nonline!r itting metho" is utilise" to it the "!t! rom 2009 to 2030. >t is oun" th!t 5 2 emission !n" 52 emission  per c!pit! into the !ir or &igeri! "ecre!se" ro m 2009 to 2011 but howeer incre!sing continuousl, ro m 2012 to 202%. ?he incre!se o c!rbon "ioi"e in the &igeri!n !ir sp!ce with will pose potenti!l problems in uture. olic, must be put in pl!ce to re"uce c!rbon "ioi"e emission b, re"ucing o l!ring o n!tur!l g!sses intro"uce electric r!ilw!,s !n" other energ, sources th!t !re b!se" on renew!ble energ,. norcement o !orest!tion !n" greenhouse g!sses emission re"uction policies on the countr, or ecologic!l "eelopment. ?here !re other sources o pollution o the !tmosphere with 5 2 such !s l!ring o g!sses rom reineries in @!"un! !n" &iger elt! !re!s o &igeri! !n" burning o bush !n" burning o soli" uel such !s co!l in the in"ustries th!t our rese!rch "i" not coer. ?hese other sources !lso contribute subst!nti!ll, to 5 2 emission in &igeri!.

#ey$ords: !rbon ioi"e Areenhouse mission ?r!ining u!tion *rtiici!l &eur!l &etwor (*&&) 'o"el !n" ol,nomi!l >nterpol!tion

1% &ntroduction imul!tion o the ice core mo"el ree!le" th!t the concentr!tion o c!rbon "ioi"e (o 2) in the !tmosphere oer the l!st 10000 ,e!rs w!s on incre!se when comp!re with the !!il!ble inorm!tion rom the ice core mo"el in the l!st %0 ,e!rs. ?his liter!ril, me!ns th!t the e!rthBs sol!r r!"i!tion h!s incre!se" (C3D). ?he !rbon "ioi"e leel inclu"ing the greenhouse g!sses such !s w!ter !pour c!rbon "ioi"e meth!ne nitrous oi"e !n" oEone h!e risen in the l!st centur,. 'eth!ne is somehow st!ble since it c!n be conerte" through chemic!l re!ction in the !tmosphere to !nother compoun" in ! sp!n o ten ,e!rs or so but c!rbon "ioi"e rem!ins unst!ble in the !ir. ?he temper!ture o the e!rth is oun" to be incre!sing bec!use o the greenhouse g!sses (C3 $D). 5ur enironment is being en"!ngere" b, the hum!n

!ctiities !n" clim!te ch!nge is now ! m!or ch!llenging  problem to bio"iersit, conser!tion e.g. !tmospheric o 2 h!s incre!se" this centur, !s ! result o combustion o h,"roc!rbon rom the in"ustries !utomobiles !n" l!ring o g!sses rom reineries mopping up o oil spill!ges etc. (C11D). 'oreoer migr!tion o species pol!r w!r" !n" etinction o species h!e been est!blishe" to be bec!use o pollution (ee C2-$D). ?he burning o ossil uels is beliee" to be the m!or source responsible or obsere" incre!se in the concentr!tion o c!rbon "ioi"e in the !tmosphere now me!sure" !t m!n, loc!tions !roun" the worl". 5bser!tions in the !tmosphere show th!t the &orthern Femisphere 5 2  concentr!tion is incre!sing more r!pi"l, th!n the outhern Femisphere concentr!tion !n" th!t the most r!pi" incre!se is !t %0GH#0G& l!titu"e. ?he gre!test se!son!l !ri!tion !lso occurs in this l!titu"e b!n" (C#D). +l!ring/enting "uring oil pro"uction oper!tions emits

30

5,el!mi en!min 5,e"ir!n !n" ub! '!m!n 6uem: 'o"els or omputing mission o !rbon ioi"e rom iui" +uel in &igeri!

52 meth!ne !n" other orms o g!ses which contribute to glob!l w!rming c!using clim!te ch!nge !n" this !ects the enironment!l !ir !n" w!ter u!lities !n" he!lth o the icinit, o the l!res. ?his neg!tes commitments m!"e b, countries un"er the nite" &!tions +r!mewor onention on lim!te h!nge (&+) !n" @,oto rotocol (C8D). Alob!l enironment!l imp!ct is "ue to the burning o h,"roc!rbon uel !ssoci!te" g!ses which pro"uces c!rbon "ioi"e (52) !n" meth!ne (F $). ?hese emissions incre!se the concentr!tion o greenhouse g!ses (AFA) in the !tmosphere which in turn contributes to glob!l w!rming (C2D). ?he ,nthetic !r!inic @erosene (@) uel which is the !ltern!tie uel to !i!tion uel h!s been oun" to le!" to ! "ecre!se AFA emissions (C% #D). >n the recent times mo"elling o greenhouse g!s (AFA) emissions h!s been o gre!t concerns to the enironment!lists especi!ll, clim!te ch!nge eperts. eer!l mo"els h!e been "eelope" there !re tr!nsport!tion uel c,cle emissions mo"els or c!lcul!ting nonspeciic !lues o AFA emissions rom cru"e oil pro"uction (C7D). 5il ro"uction Areenhouse A!s missions stim!tor (5A) h!s been "eelope" or AFA !ssessments or use in scientiic !ssessment regul!tor,  processes !n" !n!l,sis o AFA mitig!tion options b,  pro"ucers (see C7D). 5A uses petroleum engineering un"!ment!ls to mo"el emissions rom oil !n" g!s pro"uction oper!tions. ?he moti!tion or this p!per is on how to use m!them!tic!l mo"els to !n!l,se the suppl, o liui" uel in  &igeri! b, the &igeri!n &!tion!l petroleum corpor!tion (&&) rom 2009 to 2013. 6e inten" to compute the 5 2 emission !n" 5 2  emission per c!pit!l within the gien  perio" !n" m!e proection or the emission rom 2013 to 202% using greenhouse tr!ining eu!tion !rtiici!l neur!l networ (*&&) mo"el !n" pol,nomi!l interpol!tion in the '*?* sotw!re (C9D) to etr!pol!te the result rom 2013 to 2020. ?he use o greenhouse tr!ining eu!tion complies with the &> >5 1$0#$-1:200# intern!tion!l st!n"!r" which "eines the !pplic!tion o criteri! - recognise" b, the intern!tion!l scientiic communit, - or u!nti,ing !n" reporting greenhouse g!s emissions/remo!l in ! reli!ble !n" intern!tion!ll, !ccepte" m!nner. m!nner.

or on the b!sis o topogr!ph, o the region !s l!t or comple terr!in (ee C$D). eterministic mo"els c!n !lso be cl!ssiie" on the b!sis o siEe o t he iel" the, !re "escribing: hort "ist!nce ("ist!nce rom source less th!n 30-%0 m); 'esosc!le mo"els (concentr!tion iel"s o the or"er o hun"re"s o ms); ontinent!l or pl!net!r, circul!tion mo"els. 





Figure 1. Classification of deterministic models used for climate studies.

+in!ll, mo"els c!n !lso be cl!ssiie" on the b!sis o the time resolution o the concentr!tion pro"uce": piso"ic mo"els (tempor!l resolution o less th!n !n hour) hort-time mo"els (tempor!l resolutions gre!ter th!n or eu!l to !n hour !n" less th!n 5r eu!l to 2$h) lim!tologic!ll, mo"els (with resolution gre!ter th!n 2$h gener!ll, se!son!l or !nnu!l) 





2% Methods ?here !re b!sic!ll, two t,pes o m!them!tic!l mo"els in n!ture th!t is the "eterministic mo"els !n" stoch!stic mo"els. eterministic mo"els !re "esigne" to represent re!l lie problem in concrete terms while stoch!stic mo"el !re more or less b!se" on prob!bilit, concepts which m!e use o st!tistic!l concepts to stu", re!l lie problems. *s or rese!rch on !tmosphere using "eterministic mo"els !re b!se" on m!them!tic!l "escription o ph,sic!l !n" chemic!l  processes t!ing pl!ce in the !tmosphere (C$D). toch!stic mo"el !re use" or obt!ining p!r!meters or mo"el or the !tmospheric stu"ies. ?hese mo"els !re "ii"e" into "ierent c!tegories on the  b!sis o source ch!r!cteristics !s point line !n" !re! sources

Figure 2. Types Types of models for climate study classified on time resolutions.

*meric!n =ourn!l o '!them!tic!l !n" omputer 'o"elling 2017; 2(1): 29-38

2.1. Models for Carbon Dioxide Emission

>n stu",ing the !ir u!lit, there !re seer!l m!them!tic!l mo"els in use or c!lcul!ting the emission o greenhouse g!sses (ee or e!mple C$D). ?he chemic!l re!ction in the !utomobile eh!ust (C1D) c!n be represente" b, the oi"!tion re!ction !s CO + C3 H #  H 2

6here C3 H #

+

1

O2

2 +

9 2

1 2



CO2

  O2

O2





3CO2

+

(1)

3 H2 O

H 2O

31

(ee or e!mple C$D). ?he tr!ining o greenhouse g!sses c!n  be estim!te" rom the ollowing mo"el:

 E i  j

=

qi E Ci Fi  j 1000

 

(2)

6here  E i  j  is the emission o c!rbon "ioi"e meth!ne or nitrous oi"e rom e!ch uel t,pe (i) rele!se" rom oper!tion o the !cilit, "uring the ,e!r me!sure" in CO2  e- tones. qi  is the u!ntit, o the uel t,pe (i) combuste" (whether or st!tion!r, energ, purposes or tr!nsport energ, purpose) rom oper!tion o the !cilit, "uring the ,e!r me!sure" in cubic meters or gig!oules.  EC i  is the energ, !ctor o uel t,pe (i).

represents h,"roc!rbon species whose

 EF i  j is the emission rele!se" "uring the ,e!r which inclu"es

re!ctions !re !st enough in mo"elling the re!ction process. 6e sh!ll not go into "et!il stoichiometr, o re!ction r!tes since our interest in this p!per is to compute the emission o CO2  onl,.

the oi"!tion !ctor  F i  j !n" it is me!sure" in ilogr!ms. CO2   is me!sure" in e-per gig!oule or both st!tion!r, !n" tr!nsport energ, purposes.

?here seer!l eu!tions or mo"eling emission o c!rbon "ioi"e meth!ne !n" nitrous rom liui" uel in the liter!ture

Figure 3. ome sources of emission of Co ! into the atmosphere. atmosphere.

32

5,el!mi en!min 5,e"ir!n !n" ub! '!m!n 6uem: 'o"els or omputing mission o !rbon ioi"e rom iui" +uel in &igeri!

et us "eine the ollowing terms:  "efinition # tationary energy purpose$ ?his me!ns th!t uel combustion th!t is not inole" or tr!nsport!tion  purp oses. oses . Transport energy purpose$ ?his me!ns th!t uel combustion th!t is inole" or tr!nsport!tion b, registere" ehicles in r!ilw!, m!rine n!ig!tion !n" l!n" !n" !ir tr!nsport!tions (ee +igure 3). 2.2. Computation of CO2  Emission Liquid Fuel

!lcul!tion o CO2  emission or !rious t,pes o uel: 2.2.1. Diesel 1 liter o "iesel weighs 83% gr!ms !n" consists o 8#.2I o c!rbon !n" 1920 gr!ms o o,gen is nee"e" to combust

c!rbon to CO2 . ?hereore !n !er!ge consumption o %litres per 100 m to % × 2#$0gl/100(per g) J132g o CO2  per @g. 2.2.2. Petrol 1 liter o petrol weighs 7%0 gr!ms !n" consists o 87I o c!rbon !n" 17$0 gr!ms o o,gen is nee"e" to combust c!rbon to CO2 . ?hereore !n !er!ge consumption o %litres

 per 100 m to % × 2392gl/100(per g) J120g o CO2  per @g. 2.2.3. Natural as !CN" ?he n!tur!l g!s (&A) is ! g!seous store" un"er high  pressure. ?he consumption is un"er high pressure. ?he 3 3 consumption is epresse" in &m   /1000 g but !lso &m is cubic meter !t norm!l con"ition. +or n!tur!l g!s ehicles the consumptions !re epresse" in @g/100 m.

#able 1. Com%ustion information for liquid fluid. vera(e vera(e consum!tion of . liters

'uel ty!e

Wei(ht )(*

+arbon content )(* )*

O-y(en needed for combustion to C$2

CO2  )(*

iesel

83%

720 (8#.2)

1920

2392

132

etrol

720

#%2 (87)

17$0

1##%

120

ow c!loriic c!lori ic &A

1000

#1$ (#1.$)

1#38

22%2

113

Figh c!loriic &A

1000

727(72.7)

1939

2###

112

2.2.%. #&e National 'n(entor) of Carbon Dioxide Emission ?he n!tion!l inentor, o c!rbon "ioi"e emission rom liui" uel "istribute" in &igeri! b, the &igeri!n &!tion!l etroleum ooper!tion (&&) rom 2009 to 2013 will be m!"e t!en into consi"er!tion !rious uel t,pes. 'oreoer the *pp!rent consumption conersion !ctor (1/1000) energ, !ctor (A/g) !n" emission !ctor (g/A=) o the uel t,pes woul" consi"ere" to compute the CO2 emissions. 2.2.*. +rtifi,ial Neural Net-or!+NN" Model *n !rtiici!l neur!l networ (*&&) is ! leible m!them!tic!l structure which is c!p!ble o i"enti,ing comple nonline!r rel!tionships between input !n" output "!t! sets. *&& mo"els h!e been oun" useul !n" eicient  p!rticul!rl,  p!rticul!rl, in problems or which the ch!r!cteristics ch!r!cteristics o the  processes  processes !re "iicult "iicult to "escribe using ph,sic!l ph,sic!l eu!tions eu!tions (C12D).

/100 ( ) C$2 *

?he tot!l incoming sign!l which is p!ssing through ! nonline!r tr!nser + to pro"uce the outgoing sign!l is gien b, &

=

F ( ' )  where

 F ( ' ) =

1 1+ e

 ' 



  ' = ∑ (i )i  where (i o the i

weight unction o the interconnecte" neurons. ?he process o optimiEing the connection weights is nown !s tr!ining or le!rning o *&&. 6e will m!e o nonline!r itting !cilit, in '!ple to obt!in nonline!r rel!tionship between the 5 2  emissions with time.

% Results and 3iscussion 6e simul!te" the greenhouse tr!ining eu!tion !n" the *&& mo"el using the "!t!set in the *ppen"i. ?he c!lcul!tion o CO2 emission using the e. (2) !n" inorm!tion ?!ble 1 is shown in the ?!ble 2 below:

#able 2. *ational in+entory in+entory of the Car%on dio)ide dio)ide emission from from ,iquid Fuel "istri%uted "istri%uted %y **-C *igeria For the year !/ !/ to !#0. 4ER

2005

2010

2011

2012

201

52 emission (@g)

29318282.$0

2001%$02.#$ 2001%$02.#$

19%%3#28.99

1#2#133$.#9 1#2#133$.#9

%171$808.39 %171$808.39

6e will m!e use o the popul!tion &igeri! which w!s  publishe" b, the &!tion!l ure!u o t!tistics !n" it is shown in the +igure $. 'oreoer compute the !rbon "ioi"e emission "ensit, which is the CO2  emission per l!n" m!ss o

2

 &igeri! (9237#8 m ) !n" CO2   emission per c!pit! !t the gien perio" th!t is the tot!l emission "ii"e" b, &igeri!  popul!tion !t th!t perio" o time.

*meric!n =ourn!l o '!them!tic!l !n" omputer 'o"elling 2017; 2(1): 29-38

33

ource: ee C13D Figure %. *igerian population population from !!1!#!.

?he compution o emission "ensit, !n" emission per c!pit! w!s m!"e using the inorm!tion in the *ppen"i ?!ble 2the +igure $ !n" l!n" m!ss o &igeri! the result is shown in the ?!ble 3. #able 3. Car%on dio)ide emmision density and emission of capita. 4ear

!!arent CO2  consum!tion

2009 2010 2011 2012 2013

12$99#$0.00 8$##89$81.00 818901#.## #82332#.77 2181#292.92

CO2 emission)(*

CO2 /ca!ita

29318282.$0 2001%$02.#$ 19%%3#18.20 1#2#133$.#9 %171$808.39

?he !r ch!rt in +igure % shows !rbon "ioi"e emission "ensit, !n" emission per c!pit! the b!r ch!rt is the upper p!rt together with it!l st!tistic lie m!imum !n" minimum !lues or the emission. ?he b!r ch!rt in the lower p!rt is or

0.19$# 0.132$ 0.1228 0.9891 0.3111

CO2 emission density 31.7377 21.##71 21.##72 17.#033 %%.982$

emission per c!pit! which shows th!t the emission per c!pit! "ecre!se" in 2010-2012 !n" rose up in 2012 !n" then "roppe" in 2013. 6e obsere simil!r beh!iour !lso in the correspon"ing cure in the +igure #.

Carbon dioxide emission density 60   n   o    i   s   s    i   m40   e   e    d    i   x   o    i    d 20   n   o    b   r   a    C

0

data 1

2009

2010

2011 year 

2012

2013

Carbon dioxide emission per GDP 1   n   o    i   s 0.8   s    i   m   e 0.6   e    d    i   x   o 0.4    i    d   n   o    b   r 0.2   a    C

0

data 2 y min y max y me y me y mo

2009

2010

2011 Year 

2012

Figure *. 2ar Charts sho(ing sho(ing Car%on Car%on dio)ide emission density density and emission per per capita.

2013

3$

5,el!mi en!min 5,e"ir!n !n" ub! '!m!n 6uem: 'o"els or omputing mission o !rbon ioi"e rom iui" +uel in &igeri!

9

x 10

8

mission o! "arbon dioxide in #i$eria !rom %i&'id !'e(

8

data1 data2 data3

7

?he inorm!tion rom ?!ble 3 w!s etr!pol!te" using cubic spline interpol!tion !n" sh!pe presering unction which w!s !utom!tic!ll, gener!te" b, the '!tl!b sotw!re (ee C9D) to pro"uce the +igure 7. 7

6

x 10 mission !rom 2008)2014

  n 5   o    i   s   s    i   m4    

  n   o  2010    i   s 4 Y 8.467e008   s    i8.467e008   m 2.002e007   e 2    2    5    C

3

0 10 8 5 x 10  ,C 0 2008

2 1 0 2009

2010

2010.5

2011 year 

2011. 5

2012

2012.5

rom the ?!ble 2 !n" use interpol!tion metho"s !n" nonline!r regression metho"s to etr!pol!te the emission be,on" the ,e!r 2013 (ee the +igure $). 10

x 10

2

2012

40 20

2014

x 10

8

5  ,C

2015 2010 0 2005Year 

7 mmision x 10 !rom 2005)2015

60   n 10   o    i   s   s    i 5   m   e    2   o    C 0

10 8

x 10

5  ,P

20

10

2015 2010 0 2005 year 

40

x 10

8

5  ,P

2015 2010 0 2005ime

Figure . 0" of emission of CO !  the Apparent consumption and consumption of fuel for +arious times.

 ,## !or !or Carbon Carbon dioxide emission emission !rom 2008 2008 )2026 )2026 "arbon dioxide emmision in #i$eria per GDP 60

data 1 2.5

2010 ime

  n 10   o    i   s   s    i 5   m   e    2   o    C 0

6e m!e use o *&& mo"el to compute CO2  emission

60

10

!rom 2005)2015 x mision 10

2013

7

  n 10   o    i   s   s    i 5   m   e    2   o    C 0

7

2009.5

Figure /. Emission of CO! and emission per capita !/1!#0.

3

x 10

6

  sp(ine   sape)preser/in$

C'bi" sp(ine interpo(ant -ape)preser/in$ interpo(ant

50

Y  !

  $    +    * 1.5   n   o    i   s 1   s    i   m   e   e 0.5    d    i   x   o    i    d 0   n   o    b   r   a )0.5    C

40   n   o    i   s    i 30   m   m    

20

)1 10

)1.5 )2 2008

2010

2012

2014

2016 2018 year 

2020

2022

2024

2026

0 2009

Figure 0. Emission of CO! and emission per capital !#01!!.

2009.5

2010

2010.5

2011 year 

2011.5

2012

2012. 5

2013

Figure . Emission of CO! per capita.

?he b!sic st!tistic !cilit, in the plotter o '!tl!b in the pol,it toolbo w!s use" to etr!pol!te the cure in the +igure 9 rom 2013 to 202% using sc!tter "i!gr!m b, use o the ollowing pol,nomi!l o or" er si !n" seen respectiel,. #able %. -olynomial interpolants interpolants used to e)trapolate e)trapolate Co! emission from !#0 to !!.

 p1x #

p2 x%

p3 x $

p$ x3

p% x 2

p# x

p7

 p1x 7

p2 x#

oeicients:

oeicients:

 p1 J $.09#2e-013

p1 J -1.%833e-01% -1.%833e-01%

 p2 J -1.#$72e-009

p2 J #.37$8e-012 #.37$8e-012

 p3 J 1.#%#e-00#

p3 J -#.$1#%e-009 -#.$1#%e-009

 p$ J 0

p$ J 0

 p% J 0

p% J 0

 p# J 0

p# J 0

 p7 J 0

p7 J 0

p3 x%

p$ x$

 p8 J 0  &orm o resi"u!ls J 12.298. 12.298.

 &orm o resi"u!ls J 0.#3#$8 0.#3#$8

p% x3

p# x2

p7 x

p8

*meric!n =ourn!l o '!them!tic!l !n" omputer 'o"elling 2017; 2(1): 29-38

 3emar4 # 6e note th!t the cubic pol,nomi!l is suicientl, enough etr!pol!te the "!t! use" or simul!tion since other coeicient o the pol,nomi!ls is Eero. +rom st!n"!r" theor, on pol,nomi!l itting since s!mple points !re ie we epecte" the "egree o pol,nomi!l or etr!pol!tion shoul"  be less th!n or eu!l to our. our.

3%

>n the +igure 10 K +igure 11 the gr!phs o resi"ues were  plotte". the resi"ue !lue between 2010 to 2011 !n" 2013 were neg!tie which shows th!t the mo"el h!s le!st error hence the "!t! w!s !ccur!tel, itte" but !t 2012 it w!s most liel, the "!t! w!s corrupte". resid'a(s 6t de$ree

0.5

7t de$ree

"arbon dioxide emmision in #i$eria per GDP 60

0.4 data 1 data 2

40   n   o    i   s    i 20   m   m    

6t de$ree

0.2

7t de$ree

0.1

Y  ! data 3

0 )20 2008

0.3

2010

2012

2014 year 

2016

2018

  n   o    i   s 0   s    i   m     )0.1

2020

)0.2

0.6 0.4

)0.3

resid'e

)0.4

  n 0.2   o    i    t   " 0   e    9   o   r   p )0.2

)0.5 2008

)0.4 2008

2010

2012

2014 year 

2016

2018

2010

2012

2014 Year 

2016

2018

2020

2020

Figure 11. Emission of CO! per capita (ith respect to residue.

Figure 1. Emission of CO! per capita together (ith plot of residue. 7

x 10 miss ion !rom 2008)2014

x 10

6   n   o    i   s 4   s    i   m   e 2    2    5    C

0 10 8

x 10  ,C

  n 10   o    i   s   s    i 5   m   e    2   o    C 0

10

5

0

2008

2010 ime

2012

2014

x 10

8

2015 2010 0 2005 Year 

  n 10   o    i   s   s    i 5   m   e    2   o    C 0

  n 10   o    i   s   s    i 5   m   e    2   o    C 0

10

10

x 10

5  ,C

7 !rom 2005)2015 xmmision 10

7 mision !rom 2005)2015 x 10

8

7

5  ,P

2015 2010 0 2005 year 

x 10

8

5  ,P

2015 2010 0 2005 ime

Figure 12. 0" of emission of CO ! from liquid fuel for +arious times.

+rom the +igure 9 5 2 emission !n" emission per c!pit! in the &igeri!n !ir "ecre!se" rom 2009 to 2011 but howeer incre!se" continuousl, rom 2012 to 202%. ?he incre!se m!, 6e m!e use o the ollowing '!ple o "es se" L L L

 be "ue to r!pi" inlu o the countr, with ehicles couple with est!blishment o more in"epen"ent power st!tions !n" the use o gener!tor sets.

3#

5,el!mi en!min 5,e"ir!n !n" ub! '!m!n 6uem: 'o"els or omputing mission o !rbon ioi"e rom iui" +uel in &igeri!

L

?o obt!in the nonline!r it o the orm  y

=

a + %) + ec)  where ! b !n" c !re "etermine" rom the ?!ble 2 together with the

!boe m!ple co"e !n" it w!s oun" th!t MJ  is ! "umm, !ri!ble representing . ?he gr!phs or the !boe unction !re in igure 13 !n" igure 1$ respectiel,. 5biousl, the o 2  emission continuousl, incre!ses with time rom the two gr!phs.

Figure 1*. Co! emission from !/ to !!7.

Figure 13. Co! emission from !/ to !#0.

Figure 1%. Co! emission from !#5 to !06

+ = t -2009 .

6% +onclusions ?he incre!se o c!rbon "ioi"e in the &igeri!n !ir sp!ce will pose potenti!l problems in uture. olic, must be put in  pl!ce to re"uce c!rbon "ioi"e emission b, re"ucing l!ring o n!tur!l g!sses intro"uce electric r!ilw!,s !n" other energ, sources th!t !re b!se" on renew!ble energ,. norcement o !orest!tion !n" greenhouse g!sses emission re"uction  policies on the countr, or sust!in!ble "eelopment. ?here !re other sources o pollution o the !tmosphere with 5 2 such !s l!ring o g!sses rom reineries in @!"un! !n" &iger "elt! !re!s o &igeri! !n" burning o bush !n" burning o soli" uel such !s co!l in the in"ustries th!t our rese!rch "i" not coer. ome rese!rchers h!e subst!nti!te" th!t 5 2 emission rom these other sources !re contributing to the incre!se in the pollution o !tmosphere with 5 2. +urther rese!rch nee" to be eten"e" to other greenhouse g!sses so !s to h!e b!l!nce inorm!tion on the gross emission o greenhouse into &igeri! !irsp!ce !n" !tten"!nt eect on eco b!l!nce.

*meric!n =ourn!l o '!them!tic!l !n" omputer 'o"elling 2017; 2(1): 29-38

cno$led(ements ?he !uthors hereb, !cnowle"ge the support rom the  &!tion!l '!them!tic!l entre *bu! &igeri! !n" the

37

rese!rch gr!nt receie" rom the >5-5'*? ooper!tion or upporting =oint Nese!rch roects in ommon 'ember t!tes (201$-1%).

!!endi#able +1. !#0 *ational in+entory of the Car%on dio)ide emission from ,iquid Fuel "istri%ution %y **-C *igeria. 7/8o%

'uel Ty!e

!!arent +onsum!tion )#9*

+onversion 'actor )1/1000*

Ener(y 'actor );/#9*

Emission 'actor )#(/;*

+arbon 3io-ide Emission )#(*

1

A

-

0.001

2%.7

%9.#

-

2

'

1%89$$71.33 1%89$$71.33

.001

3$.2

##.7

3#2%7%1$.33

3

[email protected]

2##3#19.$9

0.001

37.%

#8.2

#81220#.8%

$

*[email protected]

$27$$%.31

0.001

3#.8

#8.9

108379#. 13

%

*A5

28307%#.79

0.001

38.#

#9.2

7%#1291.08

#

+5

-

0.001

39.7

72.9

-

7

N>*?>&A 5>

-

0.001

38.8

27.9

-

8

AN*

-

0.001

38.8

27.9

-

9

?*'>& K *F*?

-

0.001

31.$

#9.0

-

10

N*@ +>

-

0.001

38.8

27.9

-

11

(NA N & @N5)

-

0.001

3$.$

#9

-

?5?* 52 '>>5&

%171$808.39

#able +2. !#! *ational in+entory of the Car%on dio)ide emission from ,iquid Fuel "istri%ution %y **-C *igeria. 7/8o%

'uel Ty!e

!!arent +onsum!tion )#9*

+onversion 'actor )1/1000*

Ener(y 'actor );/#9*

Emission 'actor )#(/;*

+arbon 3io-ide Emission )#(*

1

A

1%$30.3$

0.001

2%.7

%9.#

23#3$.9#

2

'

%017%3%.11

0.001

3$.2

##.7

11$$%700.0$

3

[email protected]

#309%#.80

0.001

37.%

#8.2

1#13#72.02

$

*[email protected]

%$2%9.%#

0.001

3#.8

#8.9

137%7#.20

%

*A5

#7#727.#7

0.001

38.#

#9.2

1807#20.81

#

+5

$1%$$7.29

0.001

39.7

72.9

12023%8.$7

7

N>*?>&A 5>

-

0.001

38.8

27.9

-

8

AN*

-

0.001

38.8

27.9

-

9

?*'>& K *F*?

#$.8

0.001

31.$

#9.0

1$0.$0

10

N*@ +>

-

0.001

38.8

27.9

-

11

(NA N & @N5) 1290%.201

0.001

3$.$

#9.0

30#31.79

?5?* 52 '>>5&

1#2#133$.#9 1#2#133$.#9

#able +3. !## !## *ational in+entory of the Car%on dio)ide emission from ,iquid Fuel "istri%ution %y **-C *igeria. 7/8o%

'uel Ty!e

!!arent +onsum!tion )#9*

+onversion 'actor )1/1000*

Ener(y 'actor );/#9*

Emission 'actor )#(/;*

+arbon 3io-ide Emission )#(*

1

A

318$1.#1

0.001

2%.7

%9.#

$8772.$3

2

'

%#88$$9.%3

0.001

3$.2

##.7

1297#1$9.7# 1297#1$9.7#

3

[email protected]

90070#.98

0.001

37.%

#8.2

2303%%8.10

$

*[email protected]

229021.$1

0.001

3#.8

#8.9

%80#88.37

%

*A5

977891.73

0.001

38.#

#9.2

2#120##.1#

#

+5

319#07.77

0.001

39.7

72.9

92$98#.$$

7

N>*?>&A 5>

1139%.%2

0.001

38.8

27.9

1233%.88

8

AN*

#9.#$

0.001

38.8

27.9

7%.39

9

?*'>& K *F*?

#$.80

0.001

31.$

#9.0

1$0.$0

10

N*@ +>

8.81

0.001

38.8

27.9

9.%$

11

(NA N & @N5)

399%8.93

0.001

3$.$

#9

9$8$#.%2

?5?* 52 '>>5&

19%%3#28.99

38

5,el!mi en!min 5,e"ir!n !n" ub! '!m!n 6uem: 'o"els or omputing mission o !rbon ioi"e rom iui" +uel in &igeri!

#able +%. !# *ational in+entory of the Car%on dio)ide emission from ,iquid Fuel "istri%ution %y **-C *igeria. 7/8o%

'uel Ty!e

!!arent +onsum!tion )#9*

+onversion 'actor Ener(y 'actor )1/1000* );/#9*

Emission 'actor )#(/;*

+arbon 3io-ide Emission )#(*

1

A

2$712.$3

0.001

2%.7

%9.#

378%2.%2

2

'

#3%3%17.99

0.001

3$.2

##.7

1$$932#$.03 1$$932#$.03

3

[email protected]

##8%$8.09

0.001

37.%

#8.2

1709811.7$

$

*[email protected]

20%%$#.72

0.001

3#.8

#8.9

%211#7.82

%

*A5

8793#7.%%

0.001

38.#

#9.2

23$889#.2%

#

+5

272#99.10

0.001

39.7 39.7

72.9

78922#.#% $%728.7%

7

N>*?>&A 5>

$22$2.87

0.001

38.8

27.9

8

AN*

-

0.001

38.8

27.9

9

?*'>& K *F*?

113%7.1$

0.001

31.$

#9.0

2$#0#.38

10

N*@ +>

1%.17

0.001

38.8

27.9

1#.$2

11

(NA N & @N5)

18887.80

0.001

3$.$

#9.0

$$832.08

?5?* 52 '>>5&

2001%$02.#$ 2001%$02.#$

#able +*. !/ *ational in+entory of the Car%on dio)ide emission from ,iquid Fuel "istri%ution %y **-C *igeria. 7/8o%

'uel Ty!e

1 2 3 $ % # 7 8 9 10

A ' [email protected] *[email protected] *A5 +5 N>*?>&A 5> AN* ?*'>& K *F*? N*@ +> (NA N & 11 @N5) ?5?* 52 '>>5&

!!arent +onsum!tion )#9* 32312.32 9%0%#1%.%% 70%#%%.81 79#7#9.3# 1130$$$.#1 18#38#.$8 10011#.%0 11$.20 3#0#3.18 2%.19

+onversion 'actor )1/1000* 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Ener(y 'actor );/#9* 2%.7 3$.2 37.% 3#.8 38.# 39.7 38.8 38.8 31.$ 38.8

Emission 'actor )#(/;* %9.# ##.7 #8.2 #8.9 #9.2 72.9 27.9 27.9 #9.0 27.9

+arbon 3io-ide Emission )#(* $9$93.$3 21#83#39.8# 21#83#39.8# 180$71$.73 202022$. #% 3019%%3.21 %39$2#.70 108378.11 123.#2 7813$.$9 27.27

#13#.81

0.001

3$.$

#9.0

1$%##.33 29318282.$0 29318282.$0

>mp!ct o *i!tion &on-5 2  ombustion ects on the nironment!l +e!sibilit, o *ltern!tie =et +uels.  En+iron.  En+iron. ci. Technol. Technol. 2011 $% (2$) pp 1073#H107$3 5>: 10.1021/es2017%22.

References C1D

*ner +rie"m!n (1991) '!them!tics in >n"ustri!l roblems. ?he >'* nstitute erele, * *. Ao,!l . !n" *nien"er @um!r '!them!tic!l 'o"eling o !ir  pollut!nts: *n !pplic!tion to >n"i!n rb!n cit, pp 101- ro. !g!n! opoic (") www.intechopen.com. F!ss!n '. l-Foueiri *"!m N. r!n"t !n" =!mes . u, 5pen-ource * ?ool or stim!ting Areenhouse A!s missions rom ru"e 5il ro"uction sing +iel" h!r!cteristics.  En+iron. ci. Technol. echnol. 2013 $7 (11) pp %998H#00# 5>: 10.1021/es30$%70m.

C#D

Nott, N. '. (1983) istribution o !n" ch!nges in in"ustri!l c!rbon "ioi"e pro"uction =. Aeoph,s. Nes. 88(2) 1301H  1308 "oi: 10.1029/=088i02p01301.

C7D

Nussell 6. tr!tton hilip =. 6ole !n" =!mes >. Filem!n

C8D

'!lum!shi A. > (2007) h!se-5ut o A!s +l!ring in &igeri! , 2008: ?he rospects o ! 'ulti-6in roect (Neiew o the Negul!tor, nironment!l !n" ocio-conomic >ssues)O  &igeri! A!s +l!ring etroleum etroleum ?r!ining ?r!ining =ourn!l :10.$23#/epe.2012.$$039. C11D 5,el!mi . 5. !n" *sere *. orrosion in ! petroleum in"ustr,. rocee"ing o &!tion!l '!them!tic!l entre o the 6orshop on '!them!tic!l 'o"eling o nironment!l roblems.
View more...

Comments

Copyright © 2017 DOCIT Inc.